«Фармацевтическая отрасль», июнь № 3 (62) 2017

Дифференциальные сканирующие калориметры компании TA Instruments для определения полиморфизма лекарственных веществ

На сегодняшний день бо́льшая часть продукции на фармацевтическом рынке представлена твердыми лекарственными формами, что объясняется их наибольшей стабильностью и определяет использование твердых веществ при разработке новых лекарственных препаратов (ЛП). Основной проблемой использования твердых субстанций является полиморфизм — возможность существования вещества одновременно в нескольких кристаллических формах. Аморфная фаза, которая образуется в результате неполной кристаллизации из расплава, представляет собой еще один пример этого явления

Марат Ахметов, Оксана Фарион, компания Intertech Corporation

олиморфные формы имеют разные физические свойства, такие как стабильность, срок хранения, скорость растворения и биодоступность.

Для получения ЛП с заданными свойствами необходимо контролировать отсутствие нежелательных полиморфных форм как в сырье, так и в готовых ЛП. Кроме того, особое внимание следует уделять изучению полиморфных превращений в процессе хранения ЛП.

Полиморфные формы отличаются по значениям температуры плавления и теплоты плавления, что используют для их определения с помощью метода дифференциальной сканирующей калориметрии (ДСК) (Differential Scanning Calorimetry – DSC). Аморфную фазу ДСК обнаруживают по переходу стеклования (изменение удельной теплоемкости).

Дифференциальная сканирующая калориметрия — наиболее популярный метод термического анализа, с помощью которого определяют эндо- и экзотермический переход как функцию температуры. Метод основан на непрерывной регистрации разности теплового потока от образца и эталона или к образцу и эталону (изменения энтальпии) как функции температуры либо времени при нагревании образцов в соответствии с опреде-

Рис. 1. Дифференциальный сканирующий калориметр Discovery DSC 2500 производства компании TA Instruments

ленной программой в заданной газовой атмосфере. ДСК предоставляет информацию о температуре и теплоте фазовых переходов (плавления, кристаллизации, стеклования), данные о термодинамике и кинетике химических реакций, химическом составе, чистоте, термической и окислительной стабильности различных материалов и т. д.

Компания **TA Instruments** — мировой лидер по производству приборов для термоанализа и реологии — в 2016 г. разработала линейку высокоточных дифференциальных сканирующих калориметров с режимом модуляции температуры ModulatedDSC® (рис. 1). Этот режим предусматривает разделение теплового потока на обратимые и необратимые компоненты. Данное преимущество чрезвычайно полезно для измерения стеклования во всех типах сложных об-

разцов. При этом приборы являются незаменимыми помощниками при разработке и контроле качества ЛП согласно методикам Европейской и Украинской фармакопей (глава 2.2.34).

Ниже приведены примеры детектирования полиморфных форм в действующем и вспомогательном веществах при помощи дифференциальных сканирующих калориметров производства компании ТА Instruments. Также рассмотрено определение несовместимости компонентов ЛП.

Определение полиморфных форм в действующем веществе

На рис. 2 представлены результаты исследований твердого лекарственного средства на наличие полиморфных форм в действующем веществе Х. При скорости нагрева 10 °C / мин детектируется два пика плавления - при 155 °C и 161 °C, что может свидетельствовать о наличии двух полиморфных форм в препарате. При 1 ° C/ мин пики при 155 °C и 161 °C также детектируются, но в другом соотношении. Кроме того, дополнительно наблюдается пик при 175 °C. Очевидно, что материал нестабилен и меняется при нагревании. При 50 °C / мин образец имеет очень мало времени для перехода из одной формы в другую и наблюдается только один пик плавления. Последнее указывает на наличие только одной полиморфной формы в пробе.

«Фармацевтическая отрасль», июнь № 3 (62) 2017

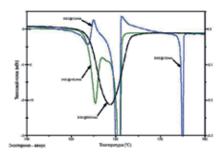


Рис. 2. Влияние скорости нагрева (1; 10; 50 °C / мин) на процессы фазовых переходов в ЛП

Полиморфизм вспомогательных веществ

Определение полиморфной формы вспомогательного вещества было рассмотрено на примере поликристаллического полимерного наполнителя L-полилактида, присутствие аморфной формы которого отвечает за скорость растворения и диффузию активного компонента. На рис. 3 представлен полилактид «в состоянии поставки». При нагревании образца со скоростью 10 °C / мин детектируются переходы, что характеризуют процессы кристаллизации и плавления. Для разделения этих эффектов применили режим с модуляцией температуры (MDSC).

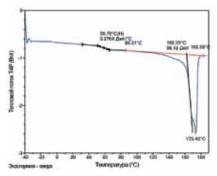


Рис. 3. Полилактид «в состоянии поставки», скорость нагрева 10 °C / мин

На рис. 4 на кривой обратимого теплового потока виден переход в стеклообразное состояние. После этого происходит снижение теплоемкости, сопровождающее холодную кристаллизацию, с последующим плавлением. На кривой необратимого теплового потока виден пик энтальпийной релаксации, характерный для физического старения, сопровождающий переход в стеклообразное состояние. Затем идет про-

цесс холодной кристаллизации с последующим улучшением кристаллической структуры (рост кристаллитов), которое сопутствует плавлению. Наложенная сумма эффектов видна на общем сигнале теплового потока, сходном с тем, который получают на дифференциальном сканирующем калориметре без модуляции при температуре 10 °C / мин.

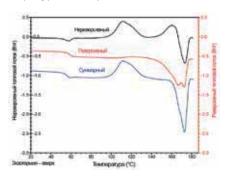


Рис. 4. Анализ полилактида в режиме MDSC

Определение совместимости действующего вещества и наполнителя

Возможность несовместимости действующего вещества и наполнителя показана на примере смесей ацетилсалициловой кислоты (аспирин) с магния стеаратом и кристаллической сахарозой. На рис. 5 показано сильное взаимодействие магния стеарата и ацетилсалициловой кислоты.

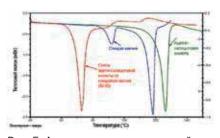


Рис. 5. Анализ ацетилсалициловой кислоты, магния стеарата и смеси ацетилсалициловой кислоты с магния стеаратом (50:50), скорость нагрева 1°C/мин

Анализ смеси в режиме модуляции температуры (рис. 6) подтверждает химическую реакцию между магния стеаратом и ацетилсалициловой кислотой и указывает на отсутствие взаимодействия последней с сахарозой.

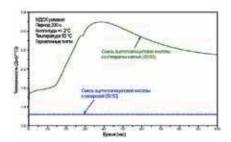


Рис. 6. Анализ смесей ацетилсалициловой кислоты с магния стеаратом (50:50) и ацетилсалициловой кислоты с сахарозой (50:50) в режиме MDSC

Заключение

Дифференциальные сканирующие калориметры производства компании TA Instruments успешно применяются в фармацевтических лабораториях во всем мире, в том числе в Украине, для определения:

- полиморфных форм
- ЧИСТОТЫ И СОВМЕСТИМОСТИ КОМПО-НЕНТОВ
- температуры фазовых переходов
- условий лиофильной сушки
- окислительной стабильности и индукционного времени окисления.

Более чем 50-летний опыт производства оборудования для термоанализа с применением передовых технологий и особое внимание к деталям позволили компании ТА Instruments представить лучшую в мире линейку дифференциальных сканирующих калориметров — Discovery DSC 2500, DSC 250 и DSC 25. Запатентованные системы Fusion Cell™ и Tzero™ обеспечивают отличную воспроизводимость базовой линии, высочайшие чувствительность, разрешение и точность приборов.

Помимо подбора и поставки лабораторного оборудования компания Intertech Corporation осуществляет комплексную поддержку пользователя на всех этапах: от инсталляции оборудования и обучения персонала до методических рекомендаций и технического обслуживания в гарантийный и постгарантийный периоды во всех регионах Украины. □

Контактная информация:

Intertech Corporation

Представитель Thermo Fisher Scientific и ТА Instruments в Украине Украина, г. Киев, ул. Рыбальская, 2, оф. 304, Тел.: (044) 230-23-73 info@intertech-corp.com.ua